168 research outputs found

    An adaptive method for inertia force identification in in cantilever under moving mass

    Get PDF
    The present study is concerned with the adaptive method based on wavelet transform to identify the inertia force between moving mass and cantilever. The basic model of cantilever is described and a classical identification method is introduced. Then the approximate equations about the model of cantilever can be obtained by the identification method. However, the order of modal adapted in the identification methods is usually constant which may make the identification results unsatisfied. As is known, the frequency of the highest order of modal is usually higher than the frequency of the input force in forward calculation methods. Therefore, wavelet transform is applied to decompose the data of deflection. The proportion of the low frequency component is chosen as the parameter of a binary function to decide the order of modal. The calculation results show that the adaptive method adapted in this paper is efficient to improve the accuracy of the inertia force between the moving mass and cantilever, and also the relationship between the proportion of low frequency component and the order of modal is indicated

    PAGE: Equilibrate Personalization and Generalization in Federated Learning

    Full text link
    Federated learning (FL) is becoming a major driving force behind machine learning as a service, where customers (clients) collaboratively benefit from shared local updates under the orchestration of the service provider (server). Representing clients' current demands and the server's future demand, local model personalization and global model generalization are separately investigated, as the ill-effects of data heterogeneity enforce the community to focus on one over the other. However, these two seemingly competing goals are of equal importance rather than black and white issues, and should be achieved simultaneously. In this paper, we propose the first algorithm to balance personalization and generalization on top of game theory, dubbed PAGE, which reshapes FL as a co-opetition game between clients and the server. To explore the equilibrium, PAGE further formulates the game as Markov decision processes, and leverages the reinforcement learning algorithm, which simplifies the solving complexity. Extensive experiments on four widespread datasets show that PAGE outperforms state-of-the-art FL baselines in terms of global and local prediction accuracy simultaneously, and the accuracy can be improved by up to 35.20% and 39.91%, respectively. In addition, biased variants of PAGE imply promising adaptiveness to demand shifts in practice

    A review on N-doped biochar for oxidative degradation of organic contaminants in wastewater by persulfate activation

    Get PDF
    The Persulfate-based advanced oxidation process is the most efficient and commonly used technology to remove organic contaminants in wastewater. Due to the large surface area, unique electronic properties, abundant N functional groups, cost-effectiveness, and environmental friendliness, N-doped biochars (NBCs) are widely used as catalysts for persulfate activation. This review focuses on the NBC for oxidative degradation of organics-contaminated wastewater. Firstly, the preparation and modification methods of NBCs were reviewed. Then the catalytic performance of NBCs and modified NBCs on the oxidation degradation of organic contaminants were discussed with an emphasis on the degradation mechanism. We further summarized the detection technologies of activation mechanisms and the structures of NBCs affecting the PS activation, followed by the specific role of the N configuration of the NBC on its catalytic capacity. Finally, several challenges in the treatment of organics-contaminated wastewater by a persulfate-based advanced oxidation process were put forward and the recommendations for future research were proposed for further understanding of the advanced oxidation process activated by the NBC

    Molecular dynamics simulation of cathode crater formation in the cathode spot of vacuum arcs

    Get PDF
    Abstract A three-dimensional model based on molecular dynamics has been developed to describe the formation of a single cathode spot in vacuum arcs. The formation of the cathode spot is assumed to be controlled by the plasma ions, the effect of which is simulated in LAMMPS through the process of ion bombardment. The cathode is represented by structured copper atoms, while the ions are continuously injected into the domain with a certain velocity towards the cathode surface. Ion bombardment leads to the appearance of a crater, which is caused by the accumulation of pressure effect against the relaxation of substrate temperature. The size of the crater is found to be determined by the spatial distribution of the injected ions. The formation of the cathode spot is also scrutinised by electron emission from the cathode surface with variable surface temperature during the cathode spot development process. In addition, the evaporated atoms forming the metal vapour are observed. This study provides a description of the formation of the cathode spot at microscale, which shall be helpful to further studies of the arc rooting and arc contact (electrode) erosion in vacuum environment.</jats:p

    Transformer fault diagnosis based on probabilistic neural networks combined with vibration and noise characteristics

    Get PDF
    When the transformer is running, the vibration which is generated in the core and winding will spread outward through the medium of metal, oil, and air. The magnetic field of the core changes with the variation of the transformer excitation source and the state of the core, so the corresponding vibration and noise change. Therefore, the vibration and noise of the transformer contain a lot of information. If the information can be associated with the fault characteristics of the transformer, it is significant to evaluate the running state of the transformer through the vibration and noise signal, which improve the intelligence, safety, and stability of the transformer operation. Based on this, modeling and simulation of transformer multi-point grounding, DC bias, and short-circuit between silicon steel sheets fault are first carried out in this paper, and vibration and noise distribution of transformer under different faults are given. Second, a fault diagnosis method based on transformer vibration and noise characteristics is proposed. In the process of implementation, vibration and noise signals under multi-point grounding, DC bias, and short-circuit between silicon steel sheets are taken as the sample data, and the probabilistic neural network algorithm is used to effectively predict the transformer fault. Finally, the effectiveness of the proposed scheme is verified by identifying the simulation faults-the proposed fault diagnosis method based on PNN can be effectively applied to transformer
    • …
    corecore